Pyrolysis behavior, kinetics, and thermodynamics of waste pharmaceutical blisters under CO(2) atmosphere.

CO(2)气氛下废弃药用泡罩包装的热解行为、动力学和热力学

阅读:7
作者:Wang Binhui, Yao Zhitong, Reinmöller Markus, Kishore Nanda, Tesfaye Fiseha, Luque Rafael
The disastrous impact of COVID-19 pandemic has caused a significantly increased production and use of pharmaceutical drugs, which is accompanied by the rapid generation of waste pharmaceutical blisters (WPBs). Nonetheless, its treatment has not gained appropriate attentions and a perceptible process development was not achieved. In this study, the WPBs pyrolysis in CO(2) atmosphere was conducted as well as the thermodynamics and kinetics were investigated. The thermogravimetric analysis revealed that the WPBs decomposition could be divided into two stages of 25 - 365 °C and 365 - 900 °C with mass loss of 56.5 - 60.5 wt% and 22.5 - 25.9 wt%, respectively. Fourier-transform infrared spectroscopy analysis indicated the dechlorination process initiating at ∼300 °C. The simultaneous asymmetric stretching of HCl and stretching vibration of C-Cl bond was detected in the range of 2600 - 3250 cm(-1) and 660 - 750 cm(-1), respectively. The dechlorination reactions were almost complete at ∼520 °C and minor peaks (2900 -3100 cm(-1)) due to C-H vibrations were observed. Gas chromatography-mass spectrometry analysis indicated that the evolved products included alkanes, benzene, olefin, as well as HCl. The cycloalkenes content significantly increased during the second conversion stage, implying the addition reactions between alkanes and olefins. The apparent activation energy was calculated using three model-free methods and the values from Flynn-Wall-Ozawa model increased from 142.0 to 255.8 kJ·mol(-1) with an average value of 147.4 kJ·mol(-1). The methods of Coats-Redfern as well as Malek were applied to determine the reaction mechanism. The one-dimensional diffusion model was more reliable to describe the WPBs pyrolysis. This study will represent a significant reference case for the thermochemical conversion of multilayer packing waste and facing the increasing demand for the medical waste recycling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。