BACKGROUND: Biomedical implants used in tissue engineering repairs, such as scaffolds to repair peripheral nerves, can be too large to examine completely with histological analyses. Micro-computed tomography (micro-CT) with contrast agents allows ex vivo visualization of entire biomaterial implants and their interactions with tissues, but contrast agents can interfere with histological analyses of the tissues or cause shrinkage or loss of antigenicity. NEW METHOD: Soft tissue, ex vivo micro-CT imaging using Lugol's iodine was compatible with histology after using a rapid (48 h) method of removing iodine. RESULTS: Adult normal and repaired rat sciatic nerves were infiltrated ex vivo with iodine, imaged with micro-CT and then the iodine was removed by incubating tissues in sodium thiosulfate. Subsequent paraffin sections of normal nerve tissues showed no differences in staining with hematoxylin and eosin or immunostaining with multiple antibodies. Iodine treatment and removal did not alter axonal diameter, nuclear size or relative area covered by immunostained axons (p>0.05). Combining imaging modalities allowed comparisons of macroscopic and microscopic features of nerve tissues regenerating through simple nerve conduits or nerve conduits containing a titanium wire for guidance. COMPARISON WITH EXISTING METHODS: Quantification showed that treatment with iodine and sodium thiosulfate did not result in tissue shrinkage or loss of antigenicity. CONCLUSIONS: Because this combination of treatments is rapid and does not alter tissue morphology, this expands the ex vivo methods available to examine the success of biomaterial implants used for tissue engineering repairs.
Combining micro-computed tomography with histology to analyze biomedical implants for peripheral nerve repair.
结合微型计算机断层扫描和组织学分析用于周围神经修复的生物医学植入物
阅读:5
作者:Hopkins Tracy M, Heilman Alexander M, Liggett James A, LaSance Kathleen, Little Kevin J, Hom David B, Minteer Danielle M, Marra Kacey G, Pixley Sarah K
| 期刊: | Journal of Neuroscience Methods | 影响因子: | 2.300 |
| 时间: | 2015 | 起止号: | 2015 Nov 30; 255:122-30 |
| doi: | 10.1016/j.jneumeth.2015.08.016 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
