Selective GSK3α Inhibition Promotes Self-Renewal Across Different Stem Cell States.

选择性抑制 GSK3α 可促进不同干细胞状态的自我更新

阅读:4
作者:Wang Duo, Wang Xiukun, Wang Shuling, Shi Kai-Xuan, Malki Safia, Chan Yanpui, Feng Joshua, Tang Jiaqi, Chen Xi, McKim Daniel, Zhang Chao, Hu Guang, Ying Qi-Long
Pan-GSK3α/β inhibition promotes stem cell self-renewal through activation of WNT/β-catenin signaling, but its broad effects complicate the precise control of stem cell states. Here, we show that selective inhibition of GSK3α with BRD0705 supports the long-term self-renewal of mouse embryonic stem cells (ESCs), epiblast stem cells (EpiSCs), and neural stem cells (NSCs), independent of β-catenin signaling. When combined with the tankyrase inhibitor IWR1, BRD0705 broadly supports the maintenance of diverse pluripotent stem cell states, including ESCs, EpiSCs, and formative pluripotent stem cells. This BRD0705/IWR1 cocktail enables stable co-culture of naive ESCs and primed EpiSCs while preserving their distinct molecular and functional identities. Single-cell transcriptomics, epigenomic profiling, and functional assays confirm sustained lineage-specific features across stem cell types. These findings demonstrate that selective GSK3α inhibition enhances stemness by buffering against differentiation cues and promoting intrinsic self-renewal capacity. This work identifies GSK3α as a key regulator of self-renewal across distinct stem cell states and establishes a versatile culture system with broad applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。