GW8510 alleviates muscle atrophy and skeletal muscle dysfunction in mice through AMPK/PGC1α signaling.

阅读:3
作者:Chen Yutong, Liu Zurui, Liu Chen, Yang Daqian, Xiao Mengmeng, Li Zhengqian, Xie Zhengwei
Preventing and restoring muscle loss and function is essential for elderly individuals. GW8510 may accelerate myotube differentiation. The present study aimed to investigate the protective effect of GW8510 (a CDK2 inhibitor) on muscle atrophy. Mouse models of muscle atrophy were induced by denervation, dexamethasone and glycerol. Muscle‑to‑body weight ratio, the cross‑sectional area of muscles, grip strength, fatigue and serum levels of superoxide dismutase and creatine kinase were assessed. In vitro, a dexamethasone‑induced C2C12 myotube atrophy model was used to evaluate mitochondrial function. Reverse transcription‑quantitative PCR, immunoblotting and small interfering RNA transfection were performed to explore the potential molecular mechanisms following treatment with GW8510. GW8510 resulted in a significant increase in the gastrocnemius and soleus muscle ratios in denervation mice (7 and 3%, respectively), alongside an increase in cross‑sectional area. Moreover, GW8510 significantly improved grip strength and superoxide dismutase activity, with similar protective effects in dexamethasone‑ and glycerol‑induced muscle atrophy models. GW8510 decreased reactive oxygen species production, increased mitochondrial DNA copy number, maintained mitochondrial dynamics and enhanced antioxidant activity in C2C12 myotubes. Mechanistically, GW8510 significantly inhibited the expression of atrophy‑associated markers F‑box protein 32 and tripartite motif‑containing 63 while activating AMPK (both P<0.01). The knockdown peroxisome proliferator‑activated receptor‑γ co‑activator‑1α (Pgc1α) negated the effects of GW8510. Overall, GW8510 mitigated muscle atrophy via the activation of the AMPK/PGC1α pathway. GW8510 could serve as a novel therapeutic agent for the prevention of muscle atrophy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。