EPHA5 regulates antifungal innate immunity by phosphorylating EPHB2 and Dectin-1.

阅读:2
作者:Gao Ru, Wang Heping, Cui Zhihui, Du Yanyun, He Ruirui, Feng Lingyun, Zeng Bo, Li Yangyang, Huang Guoling, Pan Ting, Wang Yuan, Yi Ming, Wang Chenhui
Invasive fungal infections (IFIs) have emerged as a significant health threat and cause approximately 3.75 million deaths per year globally. Understanding the detailed mechanism of the immune response to eliminate invasive fungal pathogens may help to provide new insights for the development of antifungal methods and drugs. Previously, we reported that the tyrosine kinase receptor EPH receptor B2 (EPHB2) is a coreceptor of β-glucan and phosphorylates Syk to activate the antifungal downstream signaling pathway. However, how EPHB2 is activated after fungal infection is still unknown. In this study, we show that EPHA5 plays a critical role in antifungal immunity by phosphorylating EPHB2 and Dectin-1 after fungal infection, which facilitates the recruitment and activation of Syk and subsequent activation of downstream antifungal signaling pathways. Additionally, we showed that EphA5-deficient mice exhibited increased susceptibility to Candida albicans infection, with increased fungal burdens and impaired immune cell recruitment. This study provides not only a mechanistic explanation for EPHB2 and Dectin-1 activation after fungal infection but also new insights into potential therapeutic strategies for treating IFIs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。