Discovery and Validation of a Novel Class of Necroptosis Inhibitors Targeting RIPK1.

阅读:2
作者:Soday Lior, Seripracharat Chotima, Gray Janine L, Luz André F S, Howard Ryan T, Singh Ravi, Burden Thomas J, Bernardini Erika, Mateus-Pinheiro Miguel, Petersen Jens, Gunnarsson Anders, Gunnarsson Jenny, Aagaard Anna, Sjögren Tove, Maslen Sarah, Bartlett Edward J, Iles Abigail F, Smith David M, Scott James S, Skehel Mark, Davis Andrew M, Ressurreição Ana S, Moreira Rui, Rodrigues Cecília M P, Shenoy Avinash R, Tate Edward W
Necroptosis is a form of programmed cell death that, when dysregulated, is associated with cancer and inflammatory and neurodegenerative diseases. Here, starting from hits identified from a phenotypic high-throughput screen for inhibitors of necroptosis, we synthesized a library of compounds containing a 7-phenylquinoline motif and validated their anti-necroptotic activity in a novel live-cell assay. Based on these data, we designed an optimized photoaffinity probe for target engagement studies and through biochemical and cell-based assays established receptor-interacting kinase 1 (RIPK1) as the cellular target, with inhibition of necroptosis arising from the prevention of RIPK1 autophosphorylation and activation. X-ray crystallography and mass spectrometry revealed that these compounds bind at the hinge region of the active conformation of RIPK1, establishing them as type I kinase inhibitors. In addition, we demonstrated in vitro synergy with type III kinase inhibitors, such as necrostatin-1 and found that lead compounds protected mice against acute inflammation in necroptosis models in vivo. Overall, we present a novel pharmacophore for inhibition of human RIPK1, a key protein involved in necroptosis, and provide a photoaffinity probe to explore RIPK1 target engagement in cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。