Caspases are a family of cysteine proteases that act as molecular scissors to cleave substrates and regulate biological processes such as programmed cell death and inflammation. Extensive efforts have been made to identify caspase substrates and to determine factors that dictate substrate specificity. We recently discovered that that the human inflammatory caspases (caspases-1, -4, and -5) cleave the cytokines IL-1β and IL-18 in a sequence-dependent manner. Here, we report the development of a new peptide-based probe and inhibitor based on the tetrapeptide sequence of IL-18 (LESD). We found that this inhibitor was most selective and potent at inhibiting caspase-8 activity (IC(50) = 50 nM). We also discovered that our LESD-based inhibitor is more potent than the currently used z-IETD-FMK inhibitor that is thought to be the most selective and potent inhibitor of caspase-8. Accordingly, we demonstrate that the LESD based inhibitor prevents caspase-8 activation during Yersinia pseudotuberculosis infection in primary bone-marrow derived macrophages. Furthermore, we characterize the selectivity and potency of currently known substrates and inhibitors for the apoptotic and inflammatory caspases using the same activity units of each caspase. Our findings reveal that VX-765, a known caspase-1 inhibitor, also inhibits caspase-8 (IC(50) = 1 μM) and even when specificities are shared, the caspases have different efficiencies and potencies for shared substrates and inhibitors. Altogether, we report the development of new tools that will facilitate the study of caspases and their roles in biology.
Chemical Tools Based on the Tetrapeptide Sequence of IL-18 Reveals Shared Specificities between Inflammatory and Apoptotic Initiator Caspases.
基于IL-18四肽序列的化学工具揭示了炎症和凋亡起始半胱天冬酶之间的共同特异性
阅读:6
作者:Bourne Christopher M, Raniszewski Nicole R, Kulkarni Madhura, Exconde Patrick M, Liu Sherry, Yost Winslow, Wrong Tristan J, Patio Robert C, Mahale Ashutosh, Kardhashi Matilda, Shosanya Teni, Kambayashi Mirai, Discher Bohdana M, Brodsky Igor E, Burslem George M, Taabazuing Cornelius Y
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Feb 27 |
| doi: | 10.1101/2025.02.23.639785 | 研究方向: | 炎症/感染 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
