Inflammasomes are multiprotein innate immune complexes formed in response to infections, tissue damage, or cellular stress that promote the maturation and release of IL-1β/IL-18 and are implicated in lytic cell death. The NLRP3 inflammasome is canonically activated by an initial priming event followed by an activation stimulus, leading to rapid cell death that occurs through caspase-1 (CASP1) and gasdermin D (GSDMD) activation, called pyroptosis. CASP1- and GSDMD-deficient cells are protected from the rapid LPS plus ATP-induced pyroptosis. However, innate immune responses physiologically occur over time, extending beyond minutes to hours and days. Therefore, in this study, we assessed lytic cell death beyond the early timepoints. While cells lacking the innate immune sensor NLRP3 were protected from cell death induced by the canonical NLRP3 trigger, LPS priming and ATP stimulation (LPS plus ATP), for extended time, CASP1- and GSDMD-deficient cells started to lyse in a time-dependent manner after 2âh. Nevertheless, robust IL-1β and IL-18 release was still dependent on CASP1 activation. These data suggested that NLRP3 engages an additional innate immune, lytic cell death pathway. Indeed, LPS plus ATP induced the activation of caspases and RIPKs associated with PANoptosis in WT cells, and cells deficient in PANoptosis machinery were protected from cell death for extended times. A PANoptosome complex containing NLRP3, ASC, CASP8, and RIPK3 was observed by microscopy in WT, as well as CASP1- or GSDMD-deficient, cells by 30 min post-stimulation. Overall, these findings highlight the central role of NLRP3 as a PANoptosome sensor. Given the physiological role of innate immune cell death, PANoptosis, in health and disease, our study emphasizes the importance of a comprehensive understanding of PANoptosomes, and their components, as therapeutic targets.
Innate immune sensor NLRP3 drives PANoptosome formation and PANoptosis.
先天免疫传感器 NLRP3 驱动 PANoptosome 形成和 PANoptosis
阅读:9
作者:Sharma Bhesh Raj, Choudhury Sk Mohiuddin, Abdelaal Hadia M, Wang Yaqiu, Kanneganti Thirumala-Devi
| 期刊: | Journal of Immunology | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Jun 1; 214(6):1236-1246 |
| doi: | 10.1093/jimmun/vkaf042 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
