Persister cells are a subset of bacterial cells that exhibit transient antibiotic tolerance without genetic resistance, contributing to the persistence of chronic infections. This study investigates the ability of diosgenin, a naturally occurring steroidal saponin, to inhibit persister cell formation in Staphylococcus aureus through metabolic suppression and membrane modulation. Diosgenin treatments at 80 µM and 160 µM significantly reduced persister cell survival under oxacillin, ciprofloxacin, and gentamicin stress, with reductions ranging from 82% to 94% after 3 h diosgenin pre-exposure. Gene expression analysis revealed that diosgenin downregulated relP and relQ, key genes involved in (p)ppGpp synthesis, by up to 60%, accompanied by 36-38% decreases in intracellular ATP levels. Diosgenin did not significantly alter membrane permeability or membrane potential but reduced membrane fluidity by 35% and 41% at 80 µM and 160 µM, respectively. Taken together, our findings suggest that diosgenin exerts a dual-action regulatory effect on persister cell formation by disrupting metabolic pathways essential for dormancy and altering membrane dynamics, potentially affecting membrane-associated signaling. This study provides a framework for the further exploration of diosgenin as a potential anti-persister agent with particular promise for use in combination with conventional antibiotics to enhance therapeutic efficacy against chronic bacterial infections.
Inhibition of (p)ppGpp Synthesis and Membrane Fluidity Modulation by Diosgenin: A Strategy to Suppress Staphylococcus aureus Persister Cells.
薯蓣皂苷抑制(p)ppGpp合成和调节膜流动性:抑制金黄色葡萄球菌持久细胞的策略
阅读:9
作者:Seo Yena, Kim Minjun, Kim Tae-Jong
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 30; 26(13):6335 |
| doi: | 10.3390/ijms26136335 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
