Inhibition of (p)ppGpp Synthesis and Membrane Fluidity Modulation by Diosgenin: A Strategy to Suppress Staphylococcus aureus Persister Cells.

阅读:3
作者:Seo Yena, Kim Minjun, Kim Tae-Jong
Persister cells are a subset of bacterial cells that exhibit transient antibiotic tolerance without genetic resistance, contributing to the persistence of chronic infections. This study investigates the ability of diosgenin, a naturally occurring steroidal saponin, to inhibit persister cell formation in Staphylococcus aureus through metabolic suppression and membrane modulation. Diosgenin treatments at 80 µM and 160 µM significantly reduced persister cell survival under oxacillin, ciprofloxacin, and gentamicin stress, with reductions ranging from 82% to 94% after 3 h diosgenin pre-exposure. Gene expression analysis revealed that diosgenin downregulated relP and relQ, key genes involved in (p)ppGpp synthesis, by up to 60%, accompanied by 36-38% decreases in intracellular ATP levels. Diosgenin did not significantly alter membrane permeability or membrane potential but reduced membrane fluidity by 35% and 41% at 80 µM and 160 µM, respectively. Taken together, our findings suggest that diosgenin exerts a dual-action regulatory effect on persister cell formation by disrupting metabolic pathways essential for dormancy and altering membrane dynamics, potentially affecting membrane-associated signaling. This study provides a framework for the further exploration of diosgenin as a potential anti-persister agent with particular promise for use in combination with conventional antibiotics to enhance therapeutic efficacy against chronic bacterial infections.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。