The potassium-chloride cotransporter 2 (KCC2) is required for neuronal development, and KCC2 dysregulation is implicated in several neurodevelopmental disorders, including schizophrenia, autism, and epilepsy. A dozen mutations in the KCC2-encoding gene, SLC12A5, are associated with these disorders, but few are fully characterized. To this end, we examined KCC2 biogenesis in a HEK293Â cell model. While most of the examined disease-associated mutants matured efficiently, the L403P mutant was unable to traffic to the Golgi. Two other mutants, A191V and R857L, exhibited more subtle defects in maturation. Cell surface biotinylation assays showed that these mutants were also depleted from the cell surface. Another disease-associated variant, R952H, acquired Golgi-associated glycans yet was significantly depleted from the plasma membrane, consistent with loss of a plasma membrane-stabilizing phosphorylation site. To determine whether the ability of KCC2 to mature to the Golgi could be predicted, we employed a computational pathogenicity program, Rhapsody, which was shown in past work to predict endoplasmic reticulum-associated degradation-targeting of an unrelated ion channel. We discovered that the Rhapsody pathogenicity score correlated with relative defects in KCC2 maturation, and the algorithm outperformed two other commonly used programs. These data demonstrate the efficacy of a bioinformatic tool to predict the efficiency of KCC2 biogenesis. We also propose that Rhapsody can be used to develop hypotheses on defects associated with other disease-associated SLC12A5 alleles as they are identified.
Inefficient maturation of disease-linked mutant forms of the KCC2 potassium-chloride cotransporter correlates with predicted pathogenicity.
KCC2钾氯共转运蛋白的致病突变形式的成熟效率低下与预测的致病性相关
阅读:12
作者:Kok Morgan, Singh Ishika, Aizenman Elias, Brodsky Jeffrey L
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Apr;301(4):108399 |
| doi: | 10.1016/j.jbc.2025.108399 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
