Extractable glycolipids of mycobacteria, such as lipooligosaccharides (LOSs), play crucial roles in responding to environmental stress and modulating the host immune response. Although the biosynthesis of LOS is likely regulated at multiple levels to ensure proper composition of the cell wall, the key regulators remain unknown. In this study, we investigated B11, a conserved mycobacterial small RNA (sRNA), and found that it post-transcriptionally regulates LOS synthesis in Mycobacterium marinum. Through a combination of RNA-seq and mass spectrometry screening, we identified specific genes within the LOS synthesis locus that are directly regulated by B11. We confirmed in vivo sRNA-mRNA interactions using MS2-tagged RNA affinity purification, and found that B11 utilizes the cytosine-rich loop of its Rho-independent transcriptional terminator to interact with guanine tracks adjacent to the ribosome binding sites of its target genes, thereby impeding translation and promoting mRNA degradation. Moreover, deletion of B11 altered the colony morphology associated with LOS composition. These comprehensive functional studies of the mycobacterial sRNA B11 reveal sRNA-based regulation of LOS synthesis, providing new insights into the regulatory mechanisms controlling the biosynthesis of the complex mycobacterial cell wall.
Conserved mycobacterial sRNA B11 regulates lipooligosaccharide synthesis at posttranscriptional level in Mycobacterium marinum.
阅读:2
作者:Wang Chuan, Bei Cheng, Fan Yufeng, Liu Qingyun, Ding Yue, Takiff Howard E, Gao Qian
期刊: | mLife | 影响因子: | 4.500 |
时间: | 2025 | 起止号: | 2025 Aug 25; 4(4):447-460 |
doi: | 10.1002/mlf2.70025 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。