Dysregulation of miR-342-3p in plasma exosomes derived from convalescent AMI patients and its consequences on cardiac repair

恢复期 AMI 患者血浆外泌体中 miR-342-3p 失调及其对心脏修复的影响

阅读:4
作者:Bo Wang, Chang Cao, Dongjian Han, Jing Bai, Jiacheng Guo, Qianqian Guo, Demin Li, Jianchao Zhang, Zenglei Zhang, Yunzhe Wang, Junnan Tang, Deliang Shen, Jinying Zhang

Abstract

Plasma exosomes derived from healthy people have been shown to be beneficial in terms of protecting against ischemia-reperfusion injury or acute myocardial infarction (AMI). However, a pathological condition may severely affect the constitution and biological activity of exosomes. In our study, we isolated plasma exosomes from healthy volunteers and convalescent AMI patients (3-7 d after onset). Compared to exosomes from healthy controls (Nor-Exo), exosomes from convalescent AMI patients (AMI-Exo) exhibited an impaired ability to repair damaged cardiomyocytes both in vitro and in vivo. miRNA sequencing and PCR analysis indicated that miR-342-3p was significantly downregulated in AMI-Exo. Moreover, miR-342-3p alleviated H2O2-induced injury and reduced apoptosis and autophagy in H9c2 cardiomyocytes, while in vivo restoration of miR-342-3p expression enhanced the reparative function of AMI-Exo. Further mechanistic studies revealed that the SOX6 and TFEB genes were two direct and functional targets of miR-342-3p. Taken together, during the early convalescent phase after AMI, dysregulated miR-342-3p in plasma exosomes might be responsible for their impaired cardioprotective potential. miR-342-3p contributed to exosome-mediated heart repair by inhibiting cardiomyocyte apoptosis and autophagy through targeting SOX6 and TFEB, respectively. Our work provided novel insights on the role of plasma exosomes in the natural process of cardiac repair after AMI and suggestions for therapy development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。