Mutation of the galectin-3 glycan-binding domain (Lgals3-R200S) enhances cortical bone expansion in male mice and trabecular bone mass in female mice

半乳糖凝集素-3 糖基结合结构域 (Lgals3-R200S) 突变可增强雄性小鼠的皮质骨扩张和雌性小鼠的骨小梁量

阅读:5
作者:Kevin A Maupin, Cassandra R Diegel, Payton D Stevens, Daniel Dick; VAI Vivarium and Transgenic Core; Bart O Williams

Abstract

We previously observed that genomic loss of galectin-3 (Gal-3; encoded by Lgals3) in mice has a significant protective effect on age-related bone loss. Gal-3 has both intracellular and extracellular functionality, and we wanted to assess whether the affect we observed in the Lgals3 knockout (KO) mice could be attributed to the ability of Gal-3 to bind glycoproteins. Mutation of a highly conserved arginine to a serine in human Gal-3 (LGALS3-R186S) blocks glycan binding and secretion. We generated mice with the equivalent mutation (Lgals3-R200S) and observed a subsequent reduction in Gal-3 secretion from mouse embryonic fibroblasts and in circulating blood. When examining bone structure in aged mice, we noticed some similarities to the Lgals3-KO mice and some differences. First, we observed greater bone mass in Lgals3-R200S mutant mice, as was previously observed in Lgals3-KO mice. Like Lgals3-KO mice, significantly increased trabecular bone mass was only observed in female Lgals3-R200S mice. These results suggest that the greater bone mass observed is driven by the loss of extracellular Gal-3 functionality. However, the results from our cortical bone expansion data showed a sex-dependent difference, with only male Lgals3-KO mice having an increased response, contrasting with our earlier study. These notable sex differences suggest a potential role for sex hormones, most likely androgen signaling, being involved. In summary, our results suggest that targeting extracellular Gal-3 function may be a suitable treatment for age-related loss of bone mass.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。