Single influenza A viruses induce nanoscale cellular reprogramming at the virus-cell interface.

单个甲型流感病毒可在病毒-细胞界面诱导纳米级细胞重编程

阅读:7
作者:Broich Lukas, Wullenkord Hannah, Osman Maria Kaukab, Fu Yang, Müsken Mathias, Reuther Peter, Brönstrup Mark, Sieben Christian
During infection, individual virions trigger specific cellular signaling at the virus-cell interface, a nanoscale region of the plasma membrane in direct contact with the virus. However, virus-induced receptor recruitment and cellular activation are transient processes that occur within minutes at the nanoscale. Hence, the temporal and spatial kinetics of such early events often remain poorly understood due to technical limitations. To address this challenge, we develop a protocol to covalently immobilize labelled influenza A viruses on glass surfaces before exposing them to live epithelial cells. Our method extends the observation time for virus-plasma membrane association while minimizing viral modifications, facilitating live imaging of virus-cell interactions. Using single-molecule super-resolution microscopy, we investigate virus-receptor interaction showing that viral receptors exhibit reduced mobility at the virus-binding site, which leads to a specific local receptor accumulation and turnover. We further follow the dynamics of clathrin-mediated endocytosis at the single-virus level and demonstrate the recruitment of adaptor protein 2 (AP-2), previously thought to be uninvolved in influenza A virus infection. Finally, we examine the nanoscale organization of the actin cytoskeleton at the virus-binding site, showing a local and dynamic response of the cellular actin cortex to the infecting virus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。