An Optimized Single-Molecule Pull-Down Assay for Quantification of Protein Phosphorylation.

一种用于定量蛋白质磷酸化的优化单分子下拉分析法

阅读:12
作者:Bailey Elizabeth M, Salazar-Cavazos Emanuel, Grattan Rachel M, Wester Michael J, Schodt David J, Rojo Julian A, Lidke Keith A, Lidke Diane S
Phosphorylation is a necessary posttranslational modification that regulates protein function and directs cell signaling outcomes. Current methods to measure protein phosphorylation cannot preserve the heterogeneity in phosphorylation across individual proteins. The single-molecule pull-down (SiMPull) assay was developed to investigate the composition of macromolecular complexes via immunoprecipitation of proteins on a glass coverslip followed by single-molecule imaging. The current technique is an adaptation of SiMPull that provides robust quantification of the phosphorylation state of full-length membrane receptors at the single-molecule level. Imaging thousands of individual receptors in this way allows for quantifying protein phosphorylation patterns. The present protocol details the optimized SiMPull procedure, from sample preparation to imaging. Optimization of glass preparation and antibody fixation protocols further enhances data quality. The current protocol provides code for the single-molecule data analysis that calculates the fraction of receptors phosphorylated within a sample. While this work focuses on phosphorylation of the epidermal growth factor receptor (EGFR), the protocol can be generalized to other membrane receptors and cytosolic signaling molecules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。