PSD95 is an abundant scaffolding protein that assembles multiprotein complexes controlling synaptic physiology and behavior. Confocal microscopy has previously shown that PSD95 is enriched in the postsynaptic terminals of excitatory synapses and two-dimensional (2D) super-resolution microscopy further revealed that it forms nanoclusters. In this study, we utilized three-dimensional (3D) super-resolution microscopy to examine the nanoarchitecture of PSD95 in the mouse brain, characterizing the spatial arrangement of over 8 million molecules. While we were able to identify molecular arrangements that have been previously reported, imaging in 3D allowed us to classify these with higher accuracy. Furthermore, 3D super-resolution microscopy enabled the quantification of protein levels, revealing that an abundance of PSD95 molecules existed outside of synapses as a diffuse population of supercomplexes, containing multiple copies of PSD95. Further analysis of the supercomplexes containing two units identified two populations: one that had PSD95 molecules separated by 39 ± 2 nm, and a second with a separation of 94 ± 27 nm. The finding that there exists supercomplexes containing two PSD95 units outside of the synapse suggests that supercomplexes containing multiple protein copies assemble outside the synapse and then integrate into the synapse to form a supramolecular nanocluster architecture.
3D Super-Resolution Imaging of PSD95 Reveals an Abundance of Diffuse Protein Supercomplexes in the Mouse Brain.
PSD95 的 3D 超分辨率成像揭示了小鼠大脑中存在大量弥散蛋白超复合物
阅读:15
作者:Daly Sam, Bulovaite Edita, Handa Anoushka, Morris Katie, Muresan Leila, Adams Candace, Kaizuka Takeshi, Kitching Alexandre, Spark Alexander, Chant Gregory, O Holleran Kevin, Grant Seth G N, Horrocks Mathew H, Lee Steven F
| 期刊: | ACS Chemical Neuroscience | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 1; 16(1):40-51 |
| doi: | 10.1021/acschemneuro.4c00684 | 种属: | Mouse |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
