The effectiveness of targeted therapies against the Ras-ERK signaling pathway are limited due to adaptive resistance of tumor cells. Inhibition of the Ras-ERK pathway can result in activation of the PI3K-AKT pathway, thereby diminishing the therapeutic effects of targeting ERK signaling. Here we investigated the crosstalk between the Ras-ERK and PI3K-AKT pathways in MDA-MB-231 breast cancer cell lines that have a preference to metastasize to lung (LM2), brain (BrM2) or bone (BoM2). Inhibition of the Ras-ERK pathway reduced motility in both parental and BoM2 cells. In contrast, inhibition of the Ras-ERK pathway in BrM2 and LM2 cells resulted in activation of PI3K-AKT signaling that was responsible for continued cell motility. Analysis of the cross talk between Ras-ERK and PI3K-AKT signaling pathways revealed integrin β1, myosin light chain kinase (MLCK) and myosin IIA are required for the activation of PI3K-AKT following inhibition of the Ras-ERK pathway. Furthermore, feedback activation of the PI3K-AKT pathway following MEK suppression was independent of the epidermal growth factor receptor. Thus, integrin β1, MLCK, and myosin IIA are factors in the development of resistance to MEK inhibitors. These proteins could provide an opportunity to develop markers and therapeutic targets in a subgroup of triple negative breast cancer (TNBC) that exhibit resistance against MEK inhibition.
Integrin β1, myosin light chain kinase and myosin IIA are required for activation of PI3K-AKT signaling following MEK inhibition in metastatic triple negative breast cancer.
阅读:2
作者:Choi Cheolwon, Kwon Junyeob, Lim Sunyoung, Helfman David M
期刊: | Oncotarget | 影响因子: | 0.000 |
时间: | 2016 | 起止号: | 2016 Sep 27; 7(39):63466-63487 |
doi: | 10.18632/oncotarget.11525 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。