The protective mechanism underlying phenylethanoid glycosides (PHG) actions on synaptic plasticity in rat Alzheimer's disease model induced by beta amyloid 1-42

苯乙烷类糖苷 (PHG) 对 β 淀粉样蛋白 1-42 诱发的大鼠阿尔茨海默病模型中突触可塑性的保护机制

阅读:5
作者:Jian-Xin Jia, Xu-Sheng Yan, Wei Song, Xin Fang, Zhi-Ping Cai, Dong-Sheng Huo, He Wang, Zhan-Jun Yang

Abstract

Phenylethanoid glycosides (PHG), derived from Herba cistanche, were found to exert protective effects on cognitive dysfunctions by improving synaptic plasticity in Alzheimer's disease (AD) rat model. However, the mechanisms underlying these effects of PHG on synaptic plasticity remain to be determined. Thus the aim of this study was to examine the influence of PHG on synaptic plasticity in male AD rat model induced by bilateral central nervous system ventricle injections of beta amyloid 1-42 oligomers (Aβ1-42). The following parameters were measured: (1) number of intact pyramidal cells in hippocampal CA1 region by Nissl staining, (2) post synaptic density 95 (PSD-95), phosphorylated N-methyl-D-aspartate receptor-1(p-NMDAR1) and (3) phosphorylated Tau protein (p-Tau) by immunohistochemistry and western blot. In addition, the content of malondialdehyde (MDA) and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were determined. Aβ1-42 lowered the number of intact pyramidal cells in hippocampal CA1 region. In contrast, treatment with PHG significantly elevated this cell number. Aβ1-42 significantly diminished protein expression levels of PSD-95 accompanied by elevated protein expression levels of p-NMDAR1 and p-Tau. PHG markedly increased protein expression levels of PSD-95, but significantly reduced protein expression levels of p-NMDAR1 and p-Tau. Further, Aβ1-42 markedly increased MDA content concomitantly with reduced activities of SOD and GSH-Px. PHG significantly decreased MDA content accompanied by elevated activities of SOD and GSH-Px. Data suggest that the protective effects of PHG on synaptic plasticity may involve inhibition of cytotoxicity-mediated by Aβ-1-42 administration and reduction of oxidant stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。