Bovine mastitis is a condition typically induced by various pathogens, with Escherichia coli (E. coli) being a common causative agent known for its propensity to cause persistent infections. In experimental models of bovine mastitis, lipopolysaccharide (LPS), a key component of the E. coli cell wall, is frequently employed as an inducer. The extracellular matrix (ECM) is regulated by MMPs, TIMPs, and the uPA system. They collectively participate in ECM degradation and remodeling and have been identified as promising targets for mastitis treatment. However, investigations into the precise mechanisms underlying E. coli and LPS-induced mastitis, as well as the relationship between bovine mastitis and the MAPK signaling pathway, remain limited. In this study, bovine mammary epithelial cells (BMECs) were treated in vitro with 10(6) CFU/mL heat-inactivated E. coli, 7.5 µg/mL LPS, or a combination of both. The treatments resulted in varying degrees of activation of the MAPK signaling pathway, specifically ERK1/2, JNK, and P38. BMECs were exposed to MAPK inhibitors (the JNK inhibitor SP600125, the ERK inhibitor PD98059, and the P38 inhibitor SB203580) after treatments with heat-inactivated E. coli (10(6) CFU/mL), LPS (7.5 µg/mL), or a combination of the two for 6, 12, 24, and 48 h. The mRNA and protein levels of MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, TIMP-1, TIMP-2, uPA, uPAR, and PAI-1 were assessed using RT-qPCR and Western blot analysis. The findings indicated that heat-inactivated E. coli and LPS stimulated the expression of MAPK mRNAs (ERK1/2, P38, and JNK) in BMECs, along with corresponding increases in the phosphorylated proteins. Furthermore, MAPK inhibitors substantially upregulated the expression of TIMP-1, TIMP-2, and PAI-1. However, no significant changes were observed in the mRNA and protein levels of MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, uPA, or uPAR. In conclusion, heat-inactivated E. coli and LPS can activate the MAPK signaling pathway in BMECs. Inhibiting this signaling pathway can modulate the expression of TIMP-1, TIMP -2, and PAI-1 at both mRNA and protein levels.
Impact of Escherichia coli and Lipopolysaccharide on the MAPK Signaling Pathway, MMPs, TIMPs, and the uPA System in Bovine Mammary Epithelial Cells.
大肠杆菌和脂多糖对牛乳腺上皮细胞中 MAPK 信号通路、MMPs、TIMPs 和 uPA 系统的影响
阅读:13
作者:Zhang Yuanyuan, Ding Yulin, Liang Junxi, Zhang Kai, Su Hong, Wang Daqing, Zhang Min, Zhao Feifei, Sun Zhiwei, Wu Zhimin, Wang Fenglong, Cao Guifang, Zhang Yong
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 20; 26(8):3893 |
| doi: | 10.3390/ijms26083893 | 种属: | Bovine |
| 研究方向: | 信号转导、细胞生物学 | 信号通路: | MAPK/ERK |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
