Impact of Dietary Manganese on Intestinal Barrier and Inflammatory Response in Broilers Challenged with Salmonella Typhimurium.

膳食锰对感染鼠伤寒沙门氏菌的肉鸡肠道屏障和炎症反应的影响

阅读:6
作者:Zhang Huaiyong, Pan Shuqin, Zhang Keying, Michiels Joris, Zeng Qiufeng, Ding Xuemei, Wang Jianping, Peng Huanwei, Bai Jie, Xuan Yue, Su Zhuowei, Bai Shiping
Growing concern for public health and food safety has prompted a special interest in developing nutritional strategies for removing waterborne and foodborne pathogens, including Salmonella. Strong links between manganese (Mn) and intestinal barrier or immune function hint that dietary Mn supplementation is likely to be a promising approach to limit the loads of pathogens in broilers. Here, we provide evidence that Salmonella Typhimurium (S. Typhimurium, 4 × 10(8) CFUs) challenge-induced intestinal injury along with systemic Mn redistribution in broilers. Further examining of the effect of dietary Mn treatments (a basal diet plus additional 0, 40, or 100 mg Mn/kg for corresponding to Mn-deficient, control, or Mn-surfeit diet, respectively) on intestinal barrier and inflammation status of broilers infected with S. Typhimurium revealed that birds fed the control and Mn-surfeit diets exhibited improved intestinal tight junctions and microbiota composition. Even without Salmonella infection, dietary Mn deficiency alone increased intestinal permeability by impairing intestinal tight junctions. In addition, when fed the control and Mn-surfeit diets, birds showed decreased Salmonella burdens in cecal content and spleen, with a concomitant increase in inflammatory cytokine levels in spleen. Furthermore, the dietary Mn-supplementation-mediated induction of cytokine production was probably associated with the nuclear factor kappa-B (NF-κB)/hydrogen peroxide (H(2)O(2)) pathway, as judged by the enhanced manganese superoxide dismutase activity and the increased H(2)O(2) level in mitochondria, together with the increased mRNA level of NF-κB in spleen. Ingenuity-pathway analysis indicated that acute-phase response pathways, T helper type 1 pathway, and dendritic cell maturation were significantly activated by the dietary Mn supplementation. Our data suggest that dietary Mn supplementation could enhance intestinal barrier and splenic inflammatory response to fight against Salmonella infection in broilers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。