Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation.

组蛋白去乙酰化酶抑制剂通过线粒体损伤和 p53 上乙酰化诱导肺癌细胞凋亡和细胞周期停滞

阅读:7
作者:Bao Lianmin, Diao Hua, Dong Nian, Su Xiaoqiong, Wang Bingbin, Mo Qiongya, Yu Heguo, Wang Xiangdong, Chen Chengshui
The reversibility of non-genotoxic phenotypic changes has been explored in order to develop novel preventive and therapeutic approaches for cancer. Quisinostat (JNJ-26481585), a novel second-generation histone deacetylase inhibitor (HDACi), has efficient therapeutic actions on non-small cell lung cancer (NSCLC) cell. The present study aims at investigating underlying molecular mechanisms involved in the therapeutic activity of quisinostat on NSCLC cells. We found that quisinostat significantly inhibited A549 cell proliferation in dose- and time-dependent manners. Up-acetylation of histones H3 and H4 and non-histone protein α-tubulin was induced by quisinostat treatment in a nanomolar concentration. We also demonstrated that quisinostat increased reactive oxygen species (ROS) production and destroyed mitochondrial membrane potential (ΔΨm), inducing mitochondria-mediated cell apoptosis. Furthermore, exposure of A549 cells to quisinostat significantly suppressed cell migration by inhibiting epithelial-mesenchymal transition (EMT) process. Bioinformatics analysis indicated that effects of quisinostat on NSCLC cells were associated with activated p53 signaling pathway. We found that quisinostat increased p53 acetylation at K382/K373 sites, upregulated the expression of p21((Waf1/Cip1)), and resulted in G1 phase arrest. Thus, our results suggest that the histone deacetylase can be a therapeutic target of NSCLC to discover and develop a new category of therapy for lung cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。