Ten-Eleven Translocation 1 and 2 Confer Overlapping Transcriptional Programs for the Proliferation of Cultured Adult Neural Stem Cells.

Ten-Eleven 易位 1 和 2 赋予培养的成年神经干细胞增殖重叠的转录程序

阅读:6
作者:Shimozaki, Koji
Adult neurogenesis originates from neural stem cells (NSCs) in specific regions of the adult brain. The molecular mechanisms that control the self-renewal and multipotency of NSCs have not been fully elucidated. In recent years, emerging evidence has revealed that ten-eleven translocation (TET) family DNA dioxygenases TET1 and TET2 play important roles in the central nervous system. Here, I present evidence that Tet1 and Tet2 are expressed in cultured NSCs derived from adult mouse brain and play an important role in the proliferative self-renewal of NSCs in an undifferentiated state. The investigation of intracellular molecular networks involving both Tet1 and Tet2 by gene knockdown and comprehensive genetic analyses showed that overlapping molecular mechanisms involving TET1 and TET2 regulate the expression of at least 16 genes required for DNA replication and cell cycle control. Interestingly, transcriptional regulation of the selected gene through TET1 and TET2 did not correlate with direct CpG demethylation of the gene promoter. These findings suggest that TET1 and TET2 play an important role in the proliferation of NSCs in the adult mouse brain by specifically regulating common genes for DNA replication and the cell cycle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。