Pathogenic bacteria induce colonic PepT1 expression: an implication in host defense response.

致病菌诱导结肠PepT1表达:对宿主防御反应具有重要意义

阅读:3
作者:Nguyen Hang Thi Thu, Dalmasso Guillaume, Powell Kimberly R, Yan Yutao, Bhatt Shantanu, Kalman Daniel, Sitaraman Shanthi V, Merlin Didier
BACKGROUND & AIMS: Expression of the di/tripeptide transporter PepT1 has been observed in the colon under inflammatory conditions; however, the inducing factors and underlying mechanisms remain unknown. Here, we address the effects of pathogenic bacteria on colonic PepT1 expression together with its functional consequences. METHODS: Human colonic HT29-Cl.19A cells were infected with the attaching and effacing enteropathogenic Escherichia coli (EPEC). Wild-type and PepT1 transgenic mice or cultured colonic tissues derived from these mice were infected with Citrobacter rodentium, a murine attaching and effacing pathogen related to EPEC. RESULTS: EPEC induced PepT1 expression and activity in HT29-Cl.19A cells by intimately attaching to host cells through lipid rafts. Induction of PepT1 expression by EPEC required the transcription factor Cdx2. PepT1 expression reduced binding of EPEC to lipid rafts, as well as activation of nuclear factor-kappaB and mitogen-activated protein kinase and production of interleukin-8. Accordingly, ex vivo and in vivo experiments revealed that C rodentium induced colonic PepT1 expression and that, compared with their wild-type counterparts, PepT1 transgenic mice infected with C rodentium exhibited decreased bacterial colonization, production of proinflammatory cytokines, and neutrophil infiltration into the colon. CONCLUSIONS: Our findings demonstrate a molecular mechanism underlying the regulation of colonic PepT1 expression under pathologic conditions and reveal a novel role for PepT1 in host defense via its capacity to modulate bacterial-epithelial interactions and intestinal inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。