miR‑101a‑3p overexpression prevents acetylcholine‑CaCl2‑induced atrial fibrillation in rats via reduction of atrial tissue fibrosis, involving inhibition of EZH2

miR-101a-3p 过表达可通过减少心房组织纤维化(包括抑制 EZH2)来预防乙酰胆碱-CaCl2 诱发的大鼠心房颤动

阅读:6
作者:Jing Zhu, Ning Zhu, Jian Xu

Abstract

Atrial fibrillation (AF), a clinically common heart arrhythmia, can result in left ventricular hypofunction, embolism and infarction. MicroRNA (miR)‑101a‑3p is lowly expressed in atrial tissues of patients with AF, but its role in AF remains unknown. In the present study, an AF model in rats was established via intravenous injection of acetylcholine (Ach)‑CaCl2. The downregulation of miR‑101a‑3p and upregulation of enhancer of zeste 2 homolog 2 (EZH2) were observed in AF model rats, indicating the involvement of miR‑101a‑3p and EZH2 in AF development. To study the effect of miR‑101a‑3p on AF in vivo, AF model rats were intramyocardially injected with lentivirus expressing miR‑101a‑3p. Electrocardiogram analysis identified that miR‑101a‑3p overexpression restored disappeared P wave and R‑R interphase changes in Ach‑CaCl2‑induced rats. Overexpression of miR‑101a‑3p also increased the atrial effective refractory period, reduced AF incidence and shortened duration of AF. Histological changes in atrial tissues were observed after H&E and Masson staining, which demonstrated that miR‑101a‑3p reduced atrial remodeling and fibrosis in AF model rats. Moreover, EZH2 expression was downregulated in atrial tissues by miR‑101a‑3p induction. Immunohistochemistry for collagen Ⅰ and collagen III revealed a reduction in atrial collagen synthesis following miR‑101a‑3p overexpression in AF model rats. Additionally, miR‑101a‑3p lowered the expression of pro‑fibrotic biomarkers, including TGF‑β1, connective tissue growth factor, fibronectin and α‑smooth muscle actin. The luciferase reporter assay results also indicated that EZH2 was a target gene of miR‑101a‑3p. Taken together, it was found that miR‑101a‑3p prevented AF in rats possibly via inhibition of collagen synthesis and atrial fibrosis by targeting EZH2, which provided a potential target for preventing AF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。