The connection between the cellular microenvironment and tumor cells is crucial for tumor progression. However, the process by which normal fibroblasts (NFs) become cancer-associated fibroblasts (CAFs) is unknown, and mounting evidence suggests that some microRNAs (miRNAs) have an important role in converting NFs into CAFs. Breast cancer (BC) has been proven to have enhanced miR-425-5p expression in order to support progression. We discovered that human mammary fibroblasts (HMFs) could uptake BC cell line-derived exosomes to change their properties, promoting the switch to the CAF phenotype and increasing cell motility, as evidenced by an increase in CAF activation-related marker protein expression and cell proliferation, invasion, and migration. Transfection of exosomes is obtained from BC cells, and miR-425-5p inhibitors suppressed the aforementioned effects as well as lowered chemokine levels and gene expression related with proliferation and metastasis. By suppressing the expression of its target gene TGFβRII (TGFβ1 receptor), miR-425-5p enhanced the transition of HMFs to the CAF phenotype. MDA-MB-231 cells and CAFs stimulated by HMF absorption of MDA-MB-23-derived exosomes showed similar proliferation, invasion, migration, and expression of -SMA, FAP, CXCL1, IL-6, TGFβ1, P21, P27, Ki67, vimentin, E-cadherin, N-cadherin, α-catenin, fibronectin, and MMP-2. TGFβ1 overexpression enhanced ROS production. Finally, we found that HMFs transiently transfected with miR-425-5p can promote tumor growth in vivo. Finally, these findings provide fresh insight on miR-425-5p as an important mediator of the interaction between BC cells and stroma.
Breast Cancer Exosome-Derived miR-425-5p Induces Cancer-Associated Fibroblast-Like Properties in Human Mammary Fibroblasts by TGFβ1/ROS Signaling Pathway.
乳腺癌外泌体衍生的 miR-425-5p 通过 TGFβ1/ROS 信号通路诱导人乳腺成纤维细胞产生癌症相关的成纤维细胞样特性
阅读:12
作者:Zhu Yue, Dou He, Liu Yuqi, Yu Pingyang, Li Fucheng, Wang Youyu, Xiao Min
| 期刊: | Oxidative Medicine and Cellular Longevity | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Nov 30; 2022:5266627 |
| doi: | 10.1155/2022/5266627 | 种属: | Human |
| 研究方向: | 信号转导、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
