Zmynd11 is essential for neurogenesis by coordinating H3K36me3 modification of Epha2 and PI3K signaling pathway.

Zmynd11 通过协调 Epha2 的 H3K36me3 修饰和 PI3K 信号通路,对神经发生至关重要

阅读:11
作者:Yang Xu, Li Lan, Qu Wenzheng, Cheng Xuejun, Zhang Jinyu, Sun Yan, Liu Suxiao, Peng Guoping, Zheng Rui, Li Xuekun
10p15.3 deletion syndrome is caused by the deficiency of MYND-type zinc finger domain-containing protein 11 (ZMYND11) and featured by global developmental delay, intellectual disability, behavioral abnormalities, etc. Although the roles of Zmynd11 is intensively studied in cancer, the function and associated mechanisms of Zmynd11 in neurodevelopment remain largely unknown. Here, we show that Zmynd11 displays abundant and dynamic expression pattern during embryonic neurodevelopment. Zmynd11 deficiency impairs embryonic neurogenesis and neurodevelopment in vitro and in vivo, and inhibits morphological maturation of neurons. Mechanistically, Zmynd11 deficiency leads to decreased Epha2 and disrupts PI3K signaling pathway. Under Zmynd11 deficient condition, H3K36me3 modification on Epha2 promoter abnormally increases and the binding of RNA polymerase II decreases. The restoration of PI3K signaling pathway by exogenous Epha2 can rescue aberrant neurogenesis induced by Zmynd11 depletion in vitro and in vivo. Collectively, our study reveals the essential function of Zmynd11 in neurogenesis via coordinating H3K36me3 modification of Epha2 and PI3K signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。