Spike-in normalization is a powerful approach to assess global changes in data obtained from genomic mapping of DNA-associated proteins by methods such as ChIP-sequencing (ChIP-seq)(,) or CUT&RUN. While multiple spike-in methods provide detailed documentation, the implementation of these approaches often omit critical quality control steps and veer from the established procedures. Spike-in normalization typically makes use of a single scalar to normalize genome-wide data, making the approach particularly vulnerable to errors in implementation. Here, we show that proper application of spike-in normalization can increase quantification accuracy across a spectrum of conditions and outline how misuse of spike-in approaches can create erroneous biological interpretations. We conclude by providing guidelines to minimize pitfalls when applying this approach to normalize data from protein-DNA interaction results.
The Wild West of spike-in normalization.
疫情高峰正常化的混乱局面
阅读:10
作者:Patel Lauren A, Cao Yuwei, Mendenhall Eric M, Benner Christopher, Goren Alon
| 期刊: | Nature Biotechnology | 影响因子: | 41.700 |
| 时间: | 2024 | 起止号: | 2024 Sep;42(9):1343-1349 |
| doi: | 10.1038/s41587-024-02377-y | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
