Epigenomic analysis identifies DTP subpopulation using HOPX to develop targeted therapy resistance in lung adenocarcinoma.

利用 HOPX 进行表观基因组分析,识别 DTP 亚群,从而在肺腺癌中产生靶向治疗耐药性

阅读:7
作者:Tian Yang, Bhattacharya Reshmee, Yoo Seungyeul, Jiang Feng, Park Eric, Lara Granados Genesis, Shen Yudao, Park Kwang-Su, Kaniskan Husnu Umit, Jin Jian, Hopkins Benjamin D, Zhu Jun, Watanabe Hideo
Genomic studies have identified oncogenic drivers in lung cancer, enabling effective targeted therapies. However, patients who initially respond inevitably experience regrowth. The drug-tolerant persister (DTP) stage is a key source of non-genetic resistance, yet its epigenetic regulation remains unclear. Using single-cell chromatin accessibility profiling (scATAC-seq), we identified two distinct DTP subpopulations in EGFR- and KRAS-inhibited models. The integrative network and pathway analysis revealed that one subpopulation is associated with cell cycle, while the other is enriched in developmental pathways. HOPX was the most enriched alveolar signature gene in the latter. It was transiently upregulated with cytoplasmic-to-nuclear translocation, and its deletion significantly delayed DTP regrowth. Mechanistically, HOPX regulates NF-κB activation and repressive histone modifications. Combining targeted therapy with NF-κB or histone-methyltransferase inhibitors nearly abolished DTP regrowth. These findings highlight a potential anti-relapse strategy by targeting developmental pathways to modulate key lineage factors during lung regeneration in patients relapsing on targeted therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。