The understanding of how gut microbiota metabolites modulate immune escape mechanisms in colorectal cancer (CRC) remains limited. In the present study, the impact of gut microbiota metabolites on the efficacy of programmed cell death protein 1 (PD-1) and programmed cell death ligand-1 (PD-L1) immunotherapy in CRC was explored, with a particular focus on the short-chain fatty acid, sodium propionate (SP), as they key metabolite. The results of the present study, determined by CCK-8 and flow cytometry, demonstrated that 10 mM SP significantly suppressed CRC cell proliferation and induced apoptosis. By contrast, 40 mM SP, but not 10 mM, markedly increased the PD-L1 mRNA and protein expression levels. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression, analyzed via bioinformatics using The Cancer Genoma Atlas datasets, was significantly higher in CRC tissues compared with healthy tissues. Additionally, survival analysis uncovered that elevated IGF2BP3 levels in tumor tissues were strongly associated with poor clinical outcomes. Moreover, 40 mM SP significantly induced the expression of IGF2BP3 mRNA and protein in CRC cells. The actinomycin D assay was conducted to assess mRNA stability, whereas methylated RNA immunoprecipitation coupled with quantitative polymerase chain reaction (qPCR) and RNA immunoprecipitation-qPCR were utilized to confirm the interaction between IGF2BP3 and PD-L1 mRNA. These results indicated that IGF2BP3 served as an N6-methyladenosine (m6A) reader for PD-L1, stabilizing its mRNA in an m6A-dependent manner, thereby upregulating the PD-L1 mRNA and protein expression levels. Therefore, high-dose SP may promote tumor immune escape via the IGF2BP3/PD-L1 axis in CRC. As such, high-dose SP may synergize with PD-1/PD-L1 blockade therapies to improve clinical outcomes in patients with CRC, particularly by upregulating PD-L1 expression.
Highâdose sodium propionate contributes to tumor immune escape through the IGF2BP3/PDâL1 axis in colorectal cancer.
高剂量丙酸钠通过 IGF2BP3/PD-L1 轴促进结直肠癌的肿瘤免疫逃逸
阅读:12
作者:Wang Xun, Hu Yikui
| 期刊: | Oncology Letters | 影响因子: | 2.200 |
| 时间: | 2025 | 起止号: | 2025 Apr 16; 29(6):303 |
| doi: | 10.3892/ol.2025.15049 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
