CRISPR screen decodes SWI/SNF chromatin remodeling complex assembly.

CRISPR筛选解码SWI/SNF染色质重塑复合物的组装

阅读:6
作者:Schwaemmle Hanna, Soldati Hadrien, Lykoskoufis Nikolaos M R, Docquier Mylène, Hainard Alexandre, Braun Simon M G
The SWI/SNF (or BAF) complex is an essential chromatin remodeler, which is frequently mutated in cancer and neurodevelopmental disorders. These are often heterozygous loss-of-function mutations, indicating a dosage-sensitive role for SWI/SNF subunits. However, the molecular mechanisms regulating SWI/SNF subunit dosage to ensure complex assembly remain largely unexplored. We performed a CRISPR KO screen, using epigenome editing in mouse embryonic stem cells, and identified Mlf2 and Rbm15 as regulators of SWI/SNF complex activity. First, we show that MLF2, a poorly characterized chaperone protein, promotes SWI/SNF assembly and binding to chromatin. Rapid degradation of MLF2 reduces chromatin accessibility at sites that depend on high levels of SWI/SNF binding to maintain open chromatin. Next, we find that RBM15, part of the m(6)A writer complex, controls m(6)A modifications on specific SWI/SNF mRNAs to regulate subunit protein levels. Misregulation of m(6)A methylation causes overexpression of core SWI/SNF subunits leading to the assembly of incomplete complexes lacking the catalytic ATPase/ARP subunits. These data indicate that targeting modulators of SWI/SNF complex assembly may offer a potent therapeutic strategy for diseases associated with impaired chromatin remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。