Deubiquitinase-dependent transcriptional silencing controls inflammation.

去泛素化酶依赖性转录沉默控制炎症

阅读:7
作者:Yi Yuxin, Xu Wenjie, Mi Pengcheng, Ye Siliang, Chen Li, Alto Neal M, Liu Zixu
Transcriptional control is crucial for the regulation of inflammation. While it is well-established that inducible transcriptional repressors are synthesized de novo through signal-dependent transcriptional upregulation, it remains unclear whether post-translational modification mechanisms, such as deubiquitination, also contribute to this process. We previously identified developmentally silenced sine oculis (SIX) transcription factors that are reactivated to control inflammatory gene transcription in differentiated immune cells under chronic microbial infections. However, the molecular mechanisms by which this transcriptional silencing process is regulated remain unclear. Here, we report that USP2, a deubiquitinase localized in the nucleus and induced by inflammatory signals, stabilizes SIX proteins through deubiquitination under inflammatory conditions. Consequently, the USP2-SIX complex acts in concert to control NF-κB-mediated inflammatory gene transcription by directly targeting gene promoters. Supporting this mechanism, Usp2(-/-) mice exhibit higher mortality during H1N1 infections, which phenocopies Six1(-/-) mice, attributed to elevated levels of life-threatening inflammatory mediators and exacerbated pathology. This study establishes a deubiquitinase-dependent transcriptional control of the inflammatory response to prevent immunopathology, offering new therapeutic avenues for combating infectious diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。