Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) hold promise as a cell-free therapy for osteoarthritis (OA), due to their immunomodulatory and anti-inflammatory properties. However, the need for large-scale expansion to obtain MSC-EVs for clinical use can lead to senescence-related changes and loss of stem-like properties. In this scenario, induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) offer the unique opportunity to address obstacles associated with traditional MSC-based therapies. This study used a xeno-free (XFS) medium for long-term expansion of both MSCs and iMSCs, and their EVs comparison. Characterization of both cells and EVs was conducted across different passages, and the anti-inflammatory potential of EVs and iEVs was assessed using an in vitro model of osteoarthritis. Long-term expansion of MSCs resulted in cellular senescence and a reduction in trilineage differentiation capacity by passage five, accompanied by diminished anti-inflammatory properties of EVs. On the other hand, iMSCs exhibited batch-to-batch variability in differentiation and EV biological properties. However, the effects of iMSC-EVs were prolonged compared to MSC-EVs, providing a wider window of activity for therapeutic purposes. Despite this, the variability among iMSC batches poses challenges for their reliability in OA treatment. Further work is needed to overcome these limitations for clinical application.
Batch variability and anti-inflammatory effects of iPSC-derived mesenchymal stromal cell extracellular vesicles in osteoarthritis in vitro model.
iPSC衍生间充质基质细胞细胞外囊泡在骨关节炎体外模型中的批次差异和抗炎作用
阅读:16
作者:Palamà Maria Elisabetta Federica, Gorgun Cansu, Rovere Matteo, Shaw Georgina M, Reverberi Daniele, Formica Matteo, Quarto Emanuele, Barry Frank, Murphy Mary, Gentili Chiara
| 期刊: | Frontiers in Bioengineering and Biotechnology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Apr 2; 13:1536843 |
| doi: | 10.3389/fbioe.2025.1536843 | 研究方向: | 细胞生物学 |
| 疾病类型: | 关节炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
