While a rich set of putative cis-regulatory sequences involved in mouse fetal development have been annotated recently on the basis of chromatin accessibility and histone modification patterns, delineating their role in developmentally regulated gene expression continues to be challenging. To fill this gap, here we mapped chromatin contacts between gene promoters and distal sequences across the genome in seven mouse fetal tissues and across six developmental stages of the forebrain. We identified 248,620 long-range chromatin interactions centered at 14,138 protein-coding genes and characterized their tissue-to-tissue variations and developmental dynamics. Integrative analysis of the interactome with previous epigenome and transcriptome datasets from the same tissues revealed a strong correlation between the chromatin contacts and chromatin state at distal enhancers, as well as gene expression patterns at predicted target genes. We predicted target genes of 15,098 candidate enhancers and used them to annotate target genes of homologous candidate enhancers in the human genome that harbor risk variants of human diseases. We present evidence that schizophrenia and other adult disease risk variants are frequently found in fetal enhancers, providing support for the hypothesis of fetal origins of adult diseases.
Integrative analysis of the 3D genome and epigenome in mouse embryonic tissues.
小鼠胚胎组织中三维基因组和表观基因组的整合分析
阅读:5
作者:Yu Miao, Zemke Nathan R, Chen Ziyin, Juric Ivan, Hu Rong, Raviram Ramya, Abnousi Armen, Fang Rongxin, Zhang Yanxiao, Gorkin David U, Li Yang E, Zhao Yuan, Lee Lindsay, Mishra Shreya, Schmitt Anthony D, Qiu Yunjiang, Dickel Diane E, Visel Axel, Pennacchio Len A, Hu Ming, Ren Bing
| 期刊: | Nature Structural & Molecular Biology | 影响因子: | 10.100 |
| 时间: | 2025 | 起止号: | 2025 Mar;32(3):479-490 |
| doi: | 10.1038/s41594-024-01431-2 | 种属: | Mouse |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
