FlgY, PflA, and PflB form a spoke-ring network in the high-torque flagellar motor of Helicobacter pylori.

FlgY、PflA 和 PflB 在幽门螺杆菌的高扭矩鞭毛马达中形成辐环网络

阅读:7
作者:Tachiyama Shoichi, Rosinke Kyle, Khan Mohammad F, Zhou Xiaotian, Xin Yue, Botting Jack M, Yue Jian, Roujeinikova Anna, Hoover Timothy R, Liu Jun
Helicobacter pylori has evolved distinct flagellar motility to colonize the human stomach. Rotation of the H. pylori flagella is driven by one of the largest known bacterial flagellar motors. In addition to the core motor components found in Escherichia coli and Salmonella enterica, the flagellar motor in H. pylori possesses many accessories that enable the bacteria to penetrate the gastric mucus layer. Here, we utilize cryoelectron tomography with molecular genetics and biochemical approaches to characterize three accessory proteins, FlgY, PflA, and PflB, and their roles in H. pylori flagellar assembly and motility. Comparative analyses of in situ flagellar motor structures from pflA, pflB, and flgY mutants and wild-type H. pylori reveal that FlgY forms a 13-fold proximal spoke-ring around the MS-ring and that PflA and PflB form an 18-fold distal spoke-ring enclosing 18 torque-generating stator complexes. We build a pseudoatomic model of the H. pylori motor by leveraging AlphaFold-predicted structures, protein-protein interactions, and in situ motor structures. Our model suggests that the FlgY spoke-ring functions as a bearing around the rotating MS-ring and as a template for stabilizing the PflA-PflB spoke-ring, thus enabling the recruitment of 18 stator complexes for high-torque generation. Overall, our study sheds light on how this spoke-ring network between the MS-ring and stator complexes enables the unique motility of H. pylori. As these accessory proteins are conserved in the phylum Campylobacterota, our findings apply broadly to a better understanding of how polar flagella help bacteria thrive in gastric and enteric niches.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。