Heparanase (HPSE) is the sole mammalian endoglycosidase that degrades heparan sulfate (HS) proteoglycans, disrupting the extracellular matrix (ECM) and promoting cancer invasion and metastasis. Although HPSE overexpression is linked to tumor progression, no clinically approved HPSE inhibitors exist. We developed aminoglycoside-based HS mimetics with defined sulfation and hydrophobic modifications to target HPSE's lipophilic pockets, a novel approach distinct from traditional HS glycans. Computational modeling showed that these mimetics engage HPSE through hydrophobic and Ï-Ï stacking interactions, enhancing affinity. The most potent compounds inhibited HPSE-driven ECM degradation, tumor cell proliferation, and invasion. In vivo, the lead candidate significantly reduced metastatic burden in B16 melanoma and MPC-11 myeloma models, showing tumor growth inhibition (TGI = 83.1%) versus SST0001 (TGI = 58.6%) and matching bortezomib. Importantly, the compound was well-tolerated with no notable toxicity. These results support HPSE as a cancer target and highlight aminoglycoside-based HS mimetics as promising therapeutics for metastatic cancer.
Design of Paromomycin and Neomycin as Sulfated and Hydrophobic Glycans to Target Heparanase-Driven Tumor Progression and Metastasis.
将巴龙霉素和新霉素设计为硫酸化和疏水性聚糖,以靶向肝素酶驱动的肿瘤进展和转移
阅读:13
作者:Abdulsalam Hawau, Philip Livia, Singh Kartikey, Farhoud Malik, Ilan Neta, Vlodavsky Israel, Nguyen Hien M
| 期刊: | Journal of Medicinal Chemistry | 影响因子: | 6.800 |
| 时间: | 2025 | 起止号: | 2025 Jun 12; 68(11):12058-12084 |
| doi: | 10.1021/acs.jmedchem.5c00937 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
