Impact of Matrix Surface Area on Griseofulvin Release from Extrudates Prepared via Nanoextrusion.

基质表面积对纳米挤出法制备的挤出物中灰黄霉素释放的影响

阅读:15
作者:Li Meng, Furey Casey, Skros Jeffrey, Xu Olivia, Rahman Mahbubur, Azad Mohammad, Dave Rajesh, Bilgili Ecevit
We aimed to examine the impact of milling of extrudates prepared via nanoextrusion and the resulting matrix surface area of the particles on griseofulvin (GF, a model poorly soluble drug) release during in vitro dissolution. Wet-milled GF nanosuspensions containing a polymer (Sol: Soluplus(®), Kol: Kolliphor(®) P407, or HPC: Hydroxypropyl cellulose) and sodium dodecyl sulfate were mixed with additional polymer and dried in an extruder. The extrudates with 2% and 10% GF loading were milled-sieved into three size fractions. XRPD-SEM results show that nanoextrusion produced GF nanocomposites with Kol/HPC and an amorphous solid dispersion (ASD) with Sol. For 8.9 mg GF dose (non-supersaturating condition), the dissolution rate parameter was higher for extrudates with higher external specific surface area and those with 10% drug loading. It exhibited a monotonic increase with surface area of the ASD, whereas its increase tended to saturate above ~30 × 10(-3) m(2)/cm(3) for the nanocomposites. In general, the nanocomposites released GF faster than the ASD due to greater wettability and faster erosion imparted by Kol/HPC than by Sol. For 100 mg GF dose, the ASD outperformed the nanocomposites due to supersaturation and only 10% GF ASD with 190 × 10(-3) m(2)/cm(3) surface area achieved immediate release (80% release within 30 min). Hence, this study suggests that ASD extrudates entail fine milling yielding > ~200 × 10(-3) m(2)/cm(3) for rapid drug release, whereas only a coarse milling yielding ~30 × 10(-3) m(2)/cm(3) may enable nanocomposites to release low-dose drugs rapidly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。