A variety of CTX-M-type extended-spectrum β-lactamases (ESBLs), including hybrid ones, have been reported in China that are uncommon elsewhere. To better characterize the substrate profiles and enzymatic mechanisms of these enzymes, we performed comparative kinetic analyses of both parental and hybrid CTX-M enzymes, including CTX-M-15, -132, -123, -64, -14 and -55, that are known to confer variable levels of β-lactam resistance in the host strains. All tested enzymes were susceptible to serine β-lactamase inhibitors, with sulbactam exhibiting the weakest inhibitory effects. CTX-M-55, which differs from CTX-M-15 by one substitution, A(77)V, displayed enhanced catalytic activity (kcat/Km) against expanded-spectrum cephalosporins (ESCs). CTX-M-55 exhibits higher structure stability, most likely by forming hydrophobic interactions between A(77)V and various key residues in different helices, thereby stabilizing the core architecture of the helix cluster, and indirectly contributes to a more stable active site conformation, which in turn shows higher catalytic efficiency and is more tolerant to temperature change. Analyses of the hybrids and their parental prototypes showed that evolution from CTX-M-15 to CTX-M-132, CTX-M-123, and CTX-M-64, characterized by gradual enhancement of catalytic activity to ESCs, was attributed to introduction of different substitutions to amino acids distal to the active site of CTX-M-15. Similarly, the increased hydrolytic activities against cephalosporins and sensitivity to β-lactamase inhibitors, clavulanic acid and sulbactam, of CTX-M-64 were partly due to the amino acids that were different from CTX-M-14 and located at both the C and N termini of CTX-M-64. These data indicate that residues distal to the active site of CTX-Ms contributed to their enhanced catalytic activities to ESCs.
Residues Distal to the Active Site Contribute to Enhanced Catalytic Activity of Variant and Hybrid β-Lactamases Derived from CTX-M-14 and CTX-M-15.
远离活性位点的残基有助于增强源自 CTX-M-14 和 CTX-M-15 的变体和混合 β-内酰胺酶的催化活性
阅读:7
作者:He Dandan, Chiou Jiachi, Zeng Zhenling, Liu Lanping, Chen Xiaojie, Zeng Li, Chan Edward Wai Chi, Liu Jian-Hua, Chen Sheng
| 期刊: | Antimicrobial Agents and Chemotherapy | 影响因子: | 4.500 |
| 时间: | 2015 | 起止号: | 2015 Oct;59(10):5976-83 |
| doi: | 10.1128/AAC.04920-14 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
