Enhanced warming and bacterial biomass production as key factors for coastal hypoxia in the southwestern Baltic Sea.

西南波罗的海沿岸地区,升温和细菌生物量增加是造成沿海缺氧的关键因素

阅读:5
作者:Hepach Helmke, Piontek Judith, Bange Hermann W, Barthelmeß Theresa, von Jackowski Anabel, Engel Anja
Coastal ecosystems are affected by a multitude of anthropogenic stressors. As the Baltic Sea ecosystems rank among the most altered marine ecosystems worldwide, they represent ideal model regions to study ecosystem responses to anthropogenic pressures. Our statistical analysis of data including dissolved organic carbon and nitrogen, as well as bacterial abundance and -biomass production from the time-series station Boknis Eck in the southwestern Baltic Sea reveals that bacterial biomass production intensifies towards summer following the phytoplankton spring bloom. Moreover, warming, especially very high temperatures in summer, enhances stratification and bacterial biomass production despite long-term reduction in nutrient input. A strong decrease in oxygen in the bottom layer is possibly linked to this. We detect an increasing trend in bacterial biomass production along with intensifying warming and stratification, and more frequently occurring hypoxia despite ongoing restoration efforts. If this trend continues, the coastal Baltic Sea ecosystem is likely to be altered even further. Coastal ecosystems play pivotal roles in mitigating impacts of climate change but if destroyed, they may amplify climate change further calling for stronger ecosystem management strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。