Transcriptome, Biochemical and Phenotypic Analysis of the Effects of a Precision Engineered Biostimulant for Inducing Salinity Stress Tolerance in Tomato.

转录组、生化和表型分析:精准工程生物刺激剂诱导番茄耐盐胁迫的效果

阅读:6
作者:Ikuyinminu Elomofe, Goñi Oscar, Łangowski Łukasz, O'Connell Shane
Salinity stress is a major problem affecting plant growth and crop productivity. While plant biostimulants have been reported to be an effective solution to tackle salinity stress in different crops, the key genes and metabolic pathways involved in these tolerance processes remain unclear. This study focused on integrating phenotypic, physiological, biochemical and transcriptome data obtained from different tissues of Solanum lycopersicum L. plants (cv. Micro-Tom) subjected to a saline irrigation water program for 61 days (EC: 5.8 dS/m) and treated with a combination of protein hydrolysate and Ascophyllum nodosum-derived biostimulant, namely PSI-475. The biostimulant application was associated with the maintenance of higher K(+)/Na(+) ratios in both young leaf and root tissue and the overexpression of transporter genes related to ion homeostasis (e.g., NHX4, HKT1;2). A more efficient osmotic adjustment was characterized by a significant increase in relative water content (RWC), which most likely was associated with osmolyte accumulation and upregulation of genes related to aquaporins (e.g., PIP2.1, TIP2.1). A higher content of photosynthetic pigments (+19.8% to +27.5%), increased expression of genes involved in photosynthetic efficiency and chlorophyll biosynthesis (e.g., LHC, PORC) and enhanced primary carbon and nitrogen metabolic mechanisms were observed, leading to a higher fruit yield and fruit number (47.5% and 32.5%, respectively). Overall, it can be concluded that the precision engineered PSI-475 biostimulant can provide long-term protective effects on salinity stressed tomato plants through a well-defined mode of action in different plant tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。