A machine learning and centrifugal microfluidics platform for bedside prediction of sepsis.

用于床旁预测脓毒症的机器学习和离心微流控平台

阅读:10
作者:Malic Lidija, Zhang Peter G Y, Plant Pamela J, Clime Liviu, Nassif Christina, Da Fonte Dillon, Haney Evan E, Moon Byeong-Ui, Sit Victor Mun-Sing, Brassard Daniel, Mounier Maxence, Churcher Eryn, Tsoporis James T, Falsafi Reza, Bains Manjeet, Baker Andrew, Trahtemberg Uriel, Lukic Ljuboje, Marshall John C, Geissler Matthias, Hancock Robert E W, Veres Teodor, Dos Santos Claudia C
Sepsis is a life-threatening organ dysfunction due to a dysfunctional response to infection. Delays in diagnosis have substantial impact on survival. Herein, blood samples from 586 in-house patients with suspected sepsis are used in conjunction with machine learning and cross-validation to define a six-gene expression signature of immune cell reprogramming, termed Sepset, to predict clinical deterioration within the first 24 h (h) of clinical presentation. Prediction accuracy (~90% in early intensive care unit (ICU) and 70% in emergency room patients) is validated in 3178 patients from existing independent cohorts. A RT-PCR-based Sepset detection test shows a 94% sensitivity in 248 patients to predict worsening of the sequential organ failure assessment scores within the first 24 h. A stand-alone centrifugal microfluidic instrument that automates whole-blood Sepset classifier detection is tested, showing a sensitivity of 92%, and specificity of 89% in identifying the risk of clinical deterioration in patients with suspected sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。