Nano Plasma Membrane Vesicle-Lipid Nanoparticle Hybrids for Enhanced Gene Delivery and Expression.

用于增强基因递送和表达的纳米质膜囊泡-脂质纳米颗粒杂合物

阅读:7
作者:Alter Claudio Luca, Lotter Claudia, Puligilla Ramya Deepthi, Bolten Jan Stephan, Sedzicki Jaroslaw, Marchese Jason, Schittny Valentin, Rucci Francesca, Beverly Michael, Palivan Cornelia G, Detampel Pascal, Einfalt Tomaž, Huwyler Jörg
Lipid nanoparticles (LNPs) have emerged as the leading nonviral nucleic acid (NA) delivery system, gaining widespread attention for their use in COVID-19 vaccines. They are recognized for their efficient NA encapsulation, modifiability, and scalable production. However, LNPs face efficacy and potency limitations due to suboptimal intracellular processing, with endosomal escape efficiencies (ESE) below 2.5%. Additionally, up to 70% of NPs undergo recycling and exocytosis after cellular uptake. In contrast, cell-derived vesicles offer biocompatibility and high-delivery efficacy but are challenging to load with exogenous NAs and to manufacture at large-scale. To leverage the strengths of both systems, a hybrid system is designed by combining cell-derived vesicles, such as nano plasma membrane vesicles (nPMVs), with LNPs through microfluidic mixing and subsequent dialysis. These hybrids demonstrate up to tenfold increase in ESE and an 18-fold rise in reporter gene expression in vitro and in vivo in zebrafish larvae (ZFL) and mice, compared to traditional LNPs. These improvements are linked to their unique physico-chemical properties, composition, and morphology. By incorporating cell-derived vesicles, this strategy streamlines the development process, significantly enhancing the efficacy and potency of gene delivery systems without the need for extensive screening.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。