Null cyp1b1 Activity in Zebrafish Leads to Variable Craniofacial Defects Associated with Altered Expression of Extracellular Matrix and Lipid Metabolism Genes

斑马鱼中 cyp1b1 活性缺失导致与细胞外基质和脂质代谢基因表达改变相关的各种颅面缺陷

阅读:7
作者:Susana Alexandre-Moreno, Juan-Manuel Bonet-Fernández, Raquel Atienzar-Aroca, José-Daniel Aroca-Aguilar, Julio Escribano

Abstract

CYP1B1 loss of function (LoF) is the main known genetic alteration present in recessive primary congenital glaucoma (PCG), an infrequent disease characterized by delayed embryonic development of the ocular iridocorneal angle; however, the underlying molecular mechanisms are poorly understood. To model CYP1B1 LoF underlying PCG, we developed a cyp1b1 knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. This line carries the c.535_667del frameshift mutation that results in the 72% mRNA reduction with the residual mRNA predicted to produce an inactive truncated protein (p.(His179Glyfs*6)). Microphthalmia and jaw maldevelopment were observed in 23% of F0 somatic mosaic mutant larvae (144 hpf). These early phenotypes were not detected in cyp1b1-KO F3 larvae (144 hpf), but 27% of adult (four months) zebrafish exhibited uni- or bilateral craniofacial alterations, indicating the existence of incomplete penetrance and variable expressivity. These phenotypes increased to 86% in the adult offspring of inbred progenitors with craniofacial defects. No glaucoma-related phenotypes were observed in cyp1b1 mutants. Transcriptomic analyses of the offspring (seven dpf) of cyp1b1-KO progenitors with adult-onset craniofacial defects revealed functionally enriched differentially expressed genes related to extracellular matrix and cell adhesion, cell growth and proliferation, lipid metabolism (retinoids, steroids and fatty acids and oxidation-reduction processes that include several cytochrome P450 genes) and inflammation. In summary, this study shows the complexity of the phenotypes and molecular pathways associated with cyp1b1 LoF, with species dependency, and provides evidence for the dysregulation of extracellular matrix gene expression as one of the mechanisms underlying the pathogenicity associated with cyp1b1 disruption.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。