Structural variation in 1,019 diverse humans based on long-read sequencing

基于长读长测序的1019个不同人类样本的结构变异分析

阅读:1
作者:Siegfried Schloissnig # ,Samarendra Pani # ,Jana Ebler ,Carsten Hain ,Vasiliki Tsapalou ,Arda Söylev ,Patrick Hüther ,Hufsah Ashraf ,Timofey Prodanov ,Mila Asparuhova ,Hugo Magalhães ,Wolfram Höps ,Jesus Emiliano Sotelo-Fonseca ,Tomas Fitzgerald ,Walter Santana-Garcia ,Ricardo Moreira-Pinhal ,Sarah Hunt ,Francy J Pérez-Llanos ,Tassilo Erik Wollenweber ,Sugirthan Sivalingam ,Dagmar Wieczorek ,Mario Cáceres ,Christian Gilissen ,Ewan Birney ,Zhihao Ding ,Jan Nygaard Jensen ,Nikhil Podduturi ,Jan Stutzki ,Bernardo Rodriguez-Martin ,Tobias Rausch ,Tobias Marschall ,Jan O Korbel

Abstract

Genomic structural variants (SVs) contribute substantially to genetic diversity and human diseases1-4, yet remain under-characterized in population-scale cohorts5. Here we conducted long-read sequencing6 in 1,019 humans to construct an intermediate-coverage resource covering 26 populations from the 1000 Genomes Project. Integrating linear and graph genome-based analyses, we uncover over 100,000 sequence-resolved biallelic SVs and we genotype 300,000 multiallelic variable number of tandem repeats7, advancing SV characterization over short-read-based population-scale surveys3,4. We characterize deletions, duplications, insertions and inversions in distinct populations. Long interspersed nuclear element-1 (L1) and SINE-VNTR-Alu (SVA) retrotransposition activities mediate the transduction8,9 of unique sequence stretches in 5' or 3', depending on source mobile element class and locus. SV breakpoint analyses point to a spectrum of homology-mediated processes contributing to SV formation and recurrent deletion events. Our open-access resource underscores the value of long-read sequencing in advancing SV characterization and enables guiding variant prioritization in patient genomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。