Bacterial chromosomally encoded type II toxin-antitoxin (TA) loci may be involved in survival upon exposure to stress and have been linked to persistence and dormancy. Therefore, understanding the role of the numerous predicted TA loci within the human pathogen Mycobacterium tuberculosis has become a topic of great interest. Antitoxin proteins are known to autoregulate TA expression under normal growth conditions, but it is unknown whether they have a more global role in transcriptional regulation. This study focuses on analyzing the regulatory role of the M. tuberculosis HigA antitoxin. We first show that the M. tuberculosis higBA locus is functional within its native organism, as higB, higA, and Rv1957 were successfully deleted from the genome together while the deletion of higA alone was not possible. The effects of higB-Rv1957 deletion on M. tuberculosis global gene expression were investigated, and a number of potential HigA-regulated genes were identified. Transcriptional fusion and protein-DNA-binding assays were utilized to confirm the direct role of HigA in Rv1954A-Rv1957 repression, and the M. tuberculosis HigA DNA-binding motif was defined as ATATAGG(N(6))CCTATAT. As HigA failed to bind to the next-most-closely related motif within the M. tuberculosis genome, HigA may not directly regulate any other genes in addition to its own operon.
Analyzing the regulatory role of the HigA antitoxin within Mycobacterium tuberculosis.
分析结核分枝杆菌中 HigA 抗毒素的调控作用
阅读:9
作者:Fivian-Hughes Amanda S, Davis Elaine O
| 期刊: | Journal of Bacteriology | 影响因子: | 3.000 |
| 时间: | 2010 | 起止号: | 2010 Sep;192(17):4348-56 |
| doi: | 10.1128/JB.00454-10 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
