Thermo-Sensitive Genic Male Sterile Lines of Neo-Tetraploid Rice Developed through Gene Editing Technology Revealed High Levels of Hybrid Vigor.

利用基因编辑技术培育出的新四倍体水稻热敏基因雄性不育系表现出很高的杂交优势

阅读:7
作者:Chen Yang, Shahid Muhammad Qasim, Wu Jinwen, Deng Ruilian, Chen Zhixiong, Wang Lan, Liu Guoqiang, Zhou Hai, Liu Xiangdong
Neo-tetraploid rice, which developed from the progenies of autotetraploid hybrid by our research group, is a useful germplasm with high fertility and strong heterosis when they crossed with other autotetraploid rice lines. The CRISPR/Cas9-mediated TMS5 gene editing system has been widely used in diploid rice, but there are few reports in tetraploid rice. Here, we used CRISPR/Cas9 technology to edit the TMS5 gene, which is a temperature sensitive gene controlling the fertility in diploid rice, in neo-tetraploid rice to develop male sterile lines. Two mutant lines, H2s and H3s, were developed from the gene editing and displayed characteristics of thermo-sensitive genic male sterility. The daily mean temperatures of 23 °C to 26 °C were found to be critical for sterility (restrictive temperature) in H2s and H3s under both controlled (growth chambers) and natural growing conditions (field). Cytological observation showed the anther dysplasia appeared later in H2s and H3s than that of the TMS5 mutant of diploid rice (E285s) under the same conditions. Then these mutant lines, H2s and H3s, were crossed with tetraploid rice to generate F(1) hybrids, which exhibited obvious advantages for effective number of panicles, total grains and seed setting. The high levels of hybrids heterosis were maintained for several generations that can save seed cost. Our research provides an effective way of developing thermo-sensitive genic male sterility (TGMS) lines of tetraploid rice using gene editing, which will accelerate the utilization of polyploid heterosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。