Minimal influence of G-protein null mutations on ozone-induced changes in gene expression, foliar injury, gas exchange and peroxidase activity in Arabidopsis thaliana L.

蛋白缺失突变对拟南芥中臭氧诱导的基因表达、叶片损伤、气体交换和过氧化物酶活性变化的影响极小

阅读:7
作者:Booker Fitzgerald, Burkey Kent, Morgan Patrick, Fiscus Edwin, Jones Alan
Ozone (O(3)) uptake by plants leads to an increase in reactive oxygen species (ROS) in the intercellular space of leaves and induces signalling processes reported to involve the membrane-bound heterotrimeric G-protein complex. Therefore, potential G-protein-mediated response mechanisms to O(3) were compared between Arabidopsis thaliana L. lines with null mutations in the α- and β-subunits (gpa1-4, agb1-2 and gpa1-4/agb1-2) and Col-0 wild-type plants. Plants were treated with a range of O(3) concentrations (5, 125, 175 and 300 nL L(-1)) for 1 and 2 d in controlled environment chambers. Transcript levels of GPA1, AGB1 and RGS1 transiently increased in Col-0 exposed to 125 nL L(-1) O(3) compared with the 5 nL L(-1) control treatment. However, silencing of α and β G-protein genes resulted in little alteration of many processes associated with O(3) injury, including the induction of ROS-signalling genes, increased leaf tissue ion leakage, decreased net photosynthesis and stomatal conductance, and increased peroxidase activity, especially in the leaf apoplast. These results indicated that many responses to O(3) stress at physiological levels were not detectably influenced by α and β G-proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。