The production of living therapeutics, cell-based delivery of drugs and gene-editing tools and the manufacturing of bio-commodities all share a common concept: they use either a synthetic or a living cell chassis to achieve their primary engineering or therapeutic goal. Live-cell chassis face limitations inherent to their auto-replicative nature and the complexity of the cellular context. This limitation highlights the need for a new chassis combining the engineering simplicity of synthetic materials and the functionalities of natural cells. Here, we describe a protocol to assemble a synthetic polymeric network inside bacterial cells, rendering them incapable of cell division and allowing them to resist environmental stressors such as high pH, hydrogen peroxide and cell-wall-targeting antibiotics that would otherwise kill unmodified bacteria. This cellular bioengineering protocol details how bacteria can be transformed into single-lifespan devices that are resistant to environmental stressors and possess programable functionality. We designate the modified bacteria as cyborg bacterial cells. This protocol expands the synthetic biology toolset, conferring precise control over living cells and creating a versatile cell chassis for biotechnology, biomedical engineering and living therapeutics. The protocol, including the preparation of gelation reagents and chassis strain, can be completed in 4 d. The implementation of the protocol requires expertise in microbiology techniques, hydrogel chemistry, fluorescence microscopy and flow cytometry. Further functionalization of the cyborg bacterial cells and adaptation of the protocol requires skills ranging from synthetic genetic circuit engineering to hydrogel polymerization chemistries.
Fabrication of cyborg bacterial cells as living cell-material hybrids using intracellular hydrogelation.
阅读:3
作者:Baghdasaryan Ofelya, Contreras-Llano Luis E, Khan Shahid, Wang Aijun, Hu Che-Ming Jack, Tan Cheemeng
期刊: | Nature Protocols | 影响因子: | 16.000 |
时间: | 2024 | 起止号: | 2024 Dec;19(12):3613-3639 |
doi: | 10.1038/s41596-024-01035-6 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。