BACKGROUND: The hereditary long QT syndrome is characterized by prolonged ventricular repolarization that can be caused by mutations to the KCNQ1 gene, which encodes the α subunits of the cardiac potassium channel complex that carries the I(Ks) current (the β subunits are encoded by KCNE1). In this study, we characterized a deleterious variant, KCNQ1-S277L, found in a patient who presented with sudden cardiac death in the presence of cocaine use. METHODS: The KCNQ1-S277L mutation was analyzed via whole-cell patch clamp, confocal imaging, surface biotinylation assays, and computer modeling. RESULTS: Homomeric mutant KCNQ1-S277L channels were unable to carry current, either alone or with KCNE1. When co-expressed in a 50/50 ratio with WT KCNQ1, current density was reduced in a dominant-negative manner, with the residual current predominantly wild type. There was no change in the activation rate and minimal changes to voltage-dependent activation for both KCNQ1 current and I(Ks) current. Immunofluorescence confocal imaging revealed reduced surface expression of mutant KCNQ1-S277L, which was biochemically confirmed by surface biotinylation showing a 44% decrease in mutant surface expression. Expression of KCNQ1-S277L with human ether-a-go-go-related gene (HERG) did not significantly affect HERG protein or current density compared to KCNQ1-WT co-expression. CONCLUSION: The KCNQ1-S277L mutation causes biophysical defects that result in dominant-negative reduction in KCNQ1 and I(Ks) current density, and a trafficking defect that results in reduced surface expression, both without affecting HERG/I(Kr) . KCNQ1-S277L mutation in the proband resulted in defective channels that compromised repolarization reserve, thereby enhancing the arrhythmic susceptibility to pharmacological blockage of I(Kr) current.
A dual mechanism for I(Ks) current reduction by the pathogenic mutation KCNQ1-S277L.
致病突变 KCNQ1-S277L 导致 I(Ks) 电流减少的双重机制
阅读:5
作者:Chen Jerri, Weber Michael, Um Sung Yon, Walsh Christine A, Tang Yingying, McDonald Thomas V
| 期刊: | Pace-Pacing and Clinical Electrophysiology | 影响因子: | 1.300 |
| 时间: | 2011 | 起止号: | 2011 Dec;34(12):1652-64 |
| doi: | 10.1111/j.1540-8159.2011.03190.x | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
