Rapid turnover of a pea aphid superclone mediated by thermal endurance in central Chile.

智利中部豌豆蚜虫超级克隆的快速更替是由耐热性介导的

阅读:4
作者:Martel Sebastián I, Zamora Cristián A, Ricote Natalia, Sepúlveda Daniela A, Mahéo Frédérique, Simon Jean-Christophe, Figueroa Christian C, Rezende Enrico L, Bozinovic Francisco
Global change drivers are imposing novel conditions on Earth's ecosystems at an unprecedented rate. Among them, biological invasions and climate change are of critical concern. It is generally thought that strictly asexual populations will be more susceptible to rapid environmental alterations due to their lack of genetic variability and, thus, of adaptive responses. In this study, we evaluated the persistence of a widely distributed asexual lineage of the alfalfa race of the pea aphid, Acyrthosiphon pisum, along a latitudinal transect of approximately 600 km in central Chile after facing environmental change for a decade. Based on microsatellite markers, we found an almost total replacement of the original aphid superclone by a new variant. Considering the unprecedented warming that this region has experienced in recent years, we experimentally evaluated the reproductive performance of these two A. pisum lineages at different thermal regimes. The new variant exhibits higher rates of population increase at warmer temperatures, and computer simulations employing a representative temperature dataset suggest that it might competitively displace the original superclone. These results support the idea of a superclone turnover mediated by differential reproductive performance under changing temperatures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。