Alternative pre-mRNA splicing (AS) is a crucial regulatory layer of gene expression in eukaryotes. AS patterns can change in response to abiotic and biotic stress, allowing cellular functions to adapt to environmental conditions. Here, we examined the effects of cellular stress-inducing chemicals on AS-mediated gene regulation in Arabidopsis thaliana by investigating the alternatively spliced forms of SERINE-ARGININE PROTEIN30 (SRp30) and U1-70Â K, encoding splicing factors, as well as ASCORBATE PEROXIDASE3 (APX3) and FOLYLPOLYGLUTAMATE SYNTHASE3 (FPGS3), encoding enzymes important for stress responses. Disrupting key cellular activities, including nitric oxide metabolism, ATPase activity, plastid function, and genome stability, affected AS patterns in Arabidopsis. Stress treatment altered the abundance of uridine-rich small nuclear RNAs (UsnRNAs), especially U1 snRNAs, which are essential non-coding RNA components of U1 small nuclear ribonucleoproteins (U1 snRNPs), suggesting that abnormalities in AS are partially mediated by changes in U1 snRNA levels. The shoot redifferentiation defectice2-1 (srd2-1) mutant defective for snRNA transcription was hypersensitive for stress treatment, since it showed changes in AS patterns at lower concentrations of stress inducers to compare with the wild type. Together, our data suggest that cellular stress can influence gene expression in plants by regulating AS, which is partially regulated by UsnRNA levels through the SRD2-mediated snRNA transcription.
Chemically-induced cellular stress signals are transmitted to alternative splicing via UsnRNA levels to alter gene expression in Arabidopsis thaliana.
化学诱导的细胞应激信号通过UsnRNA水平传递到选择性剪接,从而改变拟南芥中的基因表达
阅读:10
作者:Takahashi Hirokazu, Arae Toshihiro, Ishibashi Kodai, Sano Ryosuke, Demura Taku, Ohtani Misato
| 期刊: | Plant Molecular Biology | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Mar 16; 115(2):46 |
| doi: | 10.1007/s11103-025-01575-9 | 研究方向: | 信号转导、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
